Innovative Cultivation Strategies for Echinochloa Colona in Marginal Lands as a Sustainable Livestock Feed Resource

Article Sidebar

Published: Jul 23, 2025

Abstract:

Background of Study: The growing global demand for high-quality livestock forage is increasingly constrained by land scarcity and climate variability. Marginal lands such as saline soils, degraded peatlands, and arid regions remain underutilized, yet hold promise for sustainable forage production without competing with prime agricultural land.
Aims and Scope of Paper: this review aims to evaluate the potential of Echinochloa colona, a fast-growing and stress-tolerant wild grass, as a sustainable forage crop for cultivation on marginal lands, focusing on its agronomic performance, nutritional value, and contributions to livestock feed system sustainability.
Methods: a narrative literature review was conducted using Scopus and Google Scholar, focusing on peer-reviewed articles published between 2004 and 2025, with 59 articles selected through a systematic screening process.
Results: the findings show that E. colona thrives under adverse conditions, produces high biomass, and offers notable protein content, dietary fiber, and essential micronutrients that support livestock productivity. Agronomic enhancements such as minimum tillage, drip irrigation, biofertilizer use, and polyculture with legumes significantly improve its yield and quality. However, issues such as herbicide resistance, inadequate seed systems, limited farmer awareness, and lack of policy and market support remain barriers to adoption.
Conclusion: integrating E. colona into marginal land-based livestock systems presents an opportunity to enhance feed security, combat land degradation, and foster climate-resilient agriculture through adaptive management, technological innovation, and supportive institutional frameworks.

Keywords: Climate resilience, Echinochloa colona, Forage crop, Marginal lands, Sustainable agriculture

Authors:
1 . Rezki Amalyadi
How to Cite
Amalyadi, R. (2025). Innovative Cultivation Strategies for Echinochloa Colona in Marginal Lands as a Sustainable Livestock Feed Resource. Journal of Innovation in Applied Natural Science, 1(1), 1–9. https://doi.org/10.58723/jinas.v1i1.35
Download

Downloads

Download data is not yet available.
Licensed

Copyright (c) 2025 Rezki Amalyadi

Section
Literature Review

References

Agarwal, S., Agarwal, A., Sharma, G. L., Kothari, H., & Maloo, S. R. (2023). Organic farming issues and challenges: application of ICT. International Conference on WorldS4, 189–204. https://doi.org/10.1007/978-981-99-7886-1_17

Aggarwal, A., & Mathur, A. (2023). Recent Advances in Hydroponic Culture Media: Composition and Their Effect on Plant Growth. Def. Life Sci. J., 8, 162–169. https://doi.org/10.14429/dlsj.8.18024

AlFadhly, N. K. Z., Al-Temimi, A. A., Alkanan, Z. T., Altemimi, A. В., Younis, M. I., Giuffrè, A. M., & Abedelmaksoud, T. G. (2024). Sustainable agriculture development for food safety and nutrition. Food Systems, 7(3), 491–504. https://doi.org/10.21323/2618-9771-2024-7-3-491-504

Aradhya, S., & Navya, V. (2024). A Real time Application of Virtual Reality in Indian Agriculture. 2024 International Conference on Smart Systems for Applications in Electrical Sciences (ICSSES), 1–6. https://doi.org/10.1109/ICSSES62373.2024.10561316

Ayal, D. Y., Woldetisadik, M., Kassa, T., Tilahun, G., & Filho, W. L. (2017). Climate variability, the proliferation and expansion of major livestock diseases in East Gojjam, Northwestern Ethiopia. International Journal of Global Warming, 12(3–4), 513–531. https://doi.org/10.1504/IJGW.2017.084787

Bandaru, V., Izaurralde, R. C., Manowitz, D., Link, R., Zhang, X., & Post, W. M. (2013). Soil carbon change and net energy associated with biofuel production on marginal lands: a regional modeling perspective. Journal of Environmental Quality, 42(6), 1802–1814. https://doi.org/10.2134/jeq2013.05.0171

Banfi, E., & Galasso, G. (2021). Old and new nomenclatural combinations for Echinochloa esculenta (Japanese millet) and E. frumentacea (Indian millet)(Poaceae). Natural History Sciences, 8(1), 71–72. https://doi.org/10.4081/nhs.2021.490

Baumgartner, J. (2008). From sustainable development to management of sustainable ecosocial systems. Problemy Ekorozwoju, 3(2), 15–19. Google Scholar

Bhatt, D., Rasane, P., Singh, J., Kaur, S., Fairos, M., Kaur, J., Gunjal, M., Mahato, D. K., Mehta, C., & Avinashe, H. (2023). Nutritional advantages of barnyard millet and opportunities for its processing as value-added foods. Journal of Food Science and Technology, 60(11), 2748–2760. https://doi.org/10.1007/s13197-022-05602-1

Blanco-Canqui, H. (2016). Growing dedicated energy crops on marginal lands and ecosystem services. Soil Science Society of America Journal, 80(4), 845–858. https://doi.org/10.2136/sssaj2016.03.0080

Bogan, E., Doina, S., & Vărvăruc, D. (2015). The impact of anthropogenic activities on components of the natural environment of the Titu Plain. Scientific Annals of Stefan Cel Mare University of Suceava. Geography Series, 24(1), 54–64. https://doi.org/10.4316/GEOREVIEW.2014.24.1.170

Burland, A., & von Cossel, M. (2023). Towards managing biodiversity of European marginal agricultural land for biodiversity-friendly biomass production. Agronomy, 13(6), 1651. https://doi.org/10.3390/agronomy13061651

Canavan, K., Paterson, I. D., Ivey, P., Sutton, G. F., & Hill, M. P. (2021). Prioritisation of targets for weed biological control III: a tool to identify the next targets for biological control in South Africa and set priorities for resource allocation. Biocontrol Science and Technology, 31(6), 584–601. https://doi.org/10.1080/09583157.2021.1918638

Cervelli, E., Recchi, P. F., Fagnano, M., di Perta, E. S., & Pindozzi, S. (2024). Marginal lands between recovery and valorization. An inclusive definition to support bio-energy supply chains. The Southern Italy contexts case study. Agricultural Systems, 217, 103951. https://doi.org/10.1016/j.agsy.2024.103951

Chauhan, B. S. (2022). Phenology, growth, and seed production of junglerice (Echinochloa colona) in response to its emergence time and populations. Weed Science, 70(5), 561–568. https://doi.org/10.1017/wsc.2022.51

Chauhan, B. S., Kaur, V., & Salgotra, R. (2022). Genetic diversity and population structure analysis to study the evolution of herbicide resistance in Echinochloa colona ecotypes in Australia. Acta Physiologiae Plantarum, 44(3), 32. https://doi.org/10.1007/s11738-022-03366-x

Chowdhuri, I., & Pal, S. C. (2025). Challenges and potential pathways towards sustainable agriculture crop production: A systematic review to achieve sustainable development goals (SDGs). Soil and Tillage Research, 248, 106442. https://doi.org/10.1016/j.still.2024.106442

Chu, S. A. D., Cassida, K. A., Singh, M. P., & Burns, E. E. (2022). Critical period of weed control in an interseeded system of corn and alfalfa. Weed Science, 70(6), 680–686. https://doi.org/10.1017/wsc.2022.55

Csikós, N., & Tóth, G. (2023). Concepts of agricultural marginal lands and their utilisation: A review. Agricultural Systems, 204, 103560. https://doi.org/10.1016/j.agsy.2022.103560

Dinku, T. (2020). The value of satellite rainfall estimates in agriculture and food security. Satellite Precipitation Measurement: Volume 2, 1113–1129. https://doi.org/10.1007/978-3-030-35798-6_32

Dwivedi, S. L., Upadhyaya, H. D., Senthilvel, S., Hash, C. T., Fukunaga, K., Diao, X., Santra, D., Baltensperge, D., & Prasad, M. (2012). Millets: genetic and genomic resources. Google Scholar

Falasca, S. L., Ulberich, A. C., & Pitta-Alvarez, S. (2014). Possibilities for growing kenaf (Hibiscus cannabinus L.) in Argentina as biomass feedstock under dry-subhumid and semiarid climate conditions. Biomass and Bioenergy, 64, 70–80. https://doi.org/10.1016/j.biombioe.2014.03.031

Gabryś, B., & Kordan, B. (2022). Cultural control and other non-chemical methods. In Insect Pests of Potato (pp. 297–314). Elsevier. https://doi.org/10.1016/B978-0-12-821237-0.00006-8

Gerwin, W., Repmann, F., Galatsidas, S., Vlachaki, D., Gounaris, N., Baumgarten, W., Volkmann, C., Keramitzis, D., Kiourtsis, F., & Freese, D. (2018). Assessment and quantification of marginal lands for biomass production in Europe using soil-quality indicators. Soil, 4(4), 267–290. https://doi.org/10.5194/soil-4-267-2018

Godde, C., Dizyee, K., Ash, A., Thornton, P., Sloat, L., Roura, E., Henderson, B., & Herrero, M. (2019). Climate change and variability impacts on grazing herds: Insights from a system dynamics approach for semi‐arid Australian rangelands. Global Change Biology, 25(9), 3091–3109. https://doi.org/10.1111/gcb.14669

Gopalakrishnan, G., Cristina Negri, M., & Snyder, S. W. (2011). A novel framework to classify marginal land for sustainable biomass feedstock production. Journal of Environmental Quality, 40(5), 1593–1600. https://doi.org/10.2134/jeq2010.0539

Joseph, J., Tramberend, S., Kabi, F., Fischer, G., & Kahil, T. (2025). Sustainable intensification of fodder crop production can mitigate feed shortage and seasonality in East Africa. Environmental Development, 101158. https://doi.org/10.1016/j.envdev.2025.101158

Joshi, R. P., Jain, A. K., Chauhan, S. S., & Singh, G. (2015). Characterization of barnyard millet (Echinochloa frumentacea (Roxb.) Link.) landraces for agro-morphological traits and disease resistance. Electronic Journal of Plant Breeding, 6(4), 888–898. Google Scholar

Kang, S., Post, W., Wang, D., Nichols, J., Bandaru, V., & West, T. (2013). Hierarchical marginal land assessment for land use planning. Land Use Policy, 30(1), 106–113. https://doi.org/10.1016/j.landusepol.2012.03.002

Khan, R., Bhanu, A. N., Aneesha, N., Sirisha, H., Gupta, A., & Ajay Nikhil, A. (2024). Floral biology, pollination, genetics, origin, and diversity in barnyard millet. In Genetic Improvement of Small Millets (pp. 479–491). Springer. https://doi.org/10.1007/978-981-99-7232-6_23

Kim, J. Y., Jang, K. C., Park, B.-R., Han, S.-I., Choi, K.-J., Kim, S.-Y., Oh, S.-H., Ra, J.-E., Ha, T. J., & Lee, J. H. (2011). Physicochemical and antioxidative properties of selected barnyard millet (Echinochloa utilis) species in Korea. Food Science and Biotechnology, 20, 461–469. Kim, J. Y., Jang, K. C., Park, B.-R., Han, S.-I., Choi, K.-J., Kim, S.-Y., Oh, S.-H., Ra, J.-E., Ha, T. J., & Lee, J. H. (2011). Physicochemical and antioxidative properties of selected barnyard millet (Echinochloa utilis) species in Korea. Food Science and Biotechnology, 20, 461–469. https://doi.org/10.1007/s10068-011-0064-z

Lillo, E. P., Alcazar, S. M. T., Malaki, A. B. B., Chavez, M. L. M., Cañarijo Iii, D. M., Redoblado, B. R., Margate, M. A., Diaz, J. L. O. U., Mago, J. E., & Belanizo, J. (2025). The impacts of crop diversity and sustainable farming on food security, climate, and biodiversity in Dumanjug, Cebu, Philippines. Asian Journal of Agriculture, 9(1). https://doi.org/10.13057/asianjagric/g090122

Liu, T. T., McConkey, B. G., Ma, Z. Y., Liu, Z. G., Li, X., & Cheng, L. L. (2011). Strengths, weaknessness, opportunities and threats analysis of bioenergy production on marginal land. Energy Procedia, 5, 2378–2386. https://doi.org/10.1016/j.egypro.2011.03.409

Matloob, A., & Chauhan, B. S. (2021). Utilization of the neighborhood design to evaluate suitable cover crops and their density for Echinochloa colona management. PLoS One, 16(7), e0254584. https://doi.org/10.1371/journal.pone.0254584

Mendelsohn, R. (2009). The impact of climate change on agriculture in developing countries. Journal of Natural Resources Policy Research, 1(1), 5–19. https://doi.org/10.1080/19390450802495882

Mihrete, T. B., & Mihretu, F. B. (2025). Crop Diversification for Ensuring Sustainable Agriculture, Risk Management and Food Security. Global Challenges, 2400267. https://doi.org/10.1002/gch2.202400267

Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1–3), 57–69. https://doi.org/10.1016/j.livsci.2010.02.011

Nhamo, N., & Chikoye, D. (2017). Smart Agriculture: Scope, Relevance, and Important Milestones to Date. In Smart Technologies for Sustainable Smallholder Agriculture (pp. 1–20). Elsevier. https://doi.org/10.1016/B978-0-12-810521-4.00001-3

Nocito, K. D., Murugaiyan, V., Ali, J., Pandey, A., Casal Jr, C., De Asis, E. J., & Dimaano, N. G. (2025). Genome-Wide Dissection of Novel QTLs and Genes Associated with Weed Competitiveness in Early-Backcross Selective Introgression-Breeding Populations of Rice (Oryza sativa L.). Biology, 14(4), 413. https://doi.org/10.3390/biology14040413

Patil, D. (2024). Artificial Intelligence Innovations In Precision Farming: Enhancing Climate-Resilient Crop Management. Available at SSRN 5057424. https://dx.doi.org/10.2139/ssrn.5057424

Peerzada, A. M., Bajwa, A. A., Ali, H. H., & Chauhan, B. S. (2016). Biology, impact, and management of Echinochloa colona (L.) Link. Crop Protection, 83, 56–66. https://doi.org/10.1016/j.cropro.2016.01.011

Pham, Y., Reardon-Smith, K., & Deo, R. C. (2021). Evaluating management strategies for sustainable crop production under changing climate conditions: A system dynamics approach. Journal of Environmental Management, 292, 112790. https://doi.org/10.1016/j.jenvman.2021.112790

Rajeswari, N., & Priyadharshini, V. P. (2021). Evaluation of Nutritional and Nutraceutical Content of Polished and Unpolished Barnyard Millet-An Analytical Study. Current Research in Nutrition & Food Science, 9(3). http://dx.doi.org/10.12944/CRNFSJ.9.3.31

Reddy, Y. A. N., Reddy, Y. N. P., Ramya, V., Suma, L. S., Reddy, A. B. N., & Krishna, S. S. (2021). Drought adaptation: Approaches for crop improvement. In Millets and pseudo cereals (pp. 143–158). Elsevier. https://doi.org/10.1016/B978-0-12-820089-6.00008-2

Renganathan, V. G., Vanniarajan, C., Karthikeyan, A., & Ramalingam, J. (2020). Barnyard millet for food and nutritional security: Current status and future research direction. Frontiers in Genetics, 11, 500. https://doi.org/10.3389/fgene.2020.00500

Renzi, J. P., Coyne, C. J., Berger, J., von Wettberg, E., Nelson, M., Ureta, S., Hernández, F., Smýkal, P., & Brus, J. (2022). How could the use of crop wild relatives in breeding increase the adaptation of crops to marginal environments? Frontiers in Plant Science, 13, 886162. https://doi.org/10.3389/fpls.2022.886162

Rocha, V., Duarte, M. C., Catarino, S., Duarte, I., & Romeiras, M. M. (2021). Cabo Verde’s Poaceae flora: A reservoir of crop wild relatives diversity for crop improvement. Frontiers in Plant Science, 12, 630217. https://doi.org/10.3389/fpls.2021.630217

Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145–163. https://doi.org/10.1016/j.crm.2017.02.001

Rusinowski, S., Krzyżak, J., Sitko, K., Kalaji, H. M., Jensen, E., & Pogrzeba, M. (2019). Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits. Environmental Pollution, 250, 300–311. https://doi.org/10.1016/j.envpol.2019.04.048

Sammad, A., Wang, Y. J., Umer, S., Lirong, H., Khan, I., Khan, A., Ahmad, B., & Wang, Y. (2020). Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: Consequences and opportunities. Animals, 10(5), 793. https://doi.org/10.3390/ani10050793

Selvakumar, P., Sajimon, P. P., Vidyalakshmi, H., Anute, N., Das, A., & Manjunath, T. C. (2025). Sustainable Practices for Food Security Regenerative Agriculture and Its Impact. In Advancing Global Food Security With Agriculture 4.0 and 5.0 (pp. 289–308). IGI Global Scientific Publishing. Google Scholar

Shabbir, A., Chauhan, B. S., & Walsh, M. J. (2019). Biology and management of Echinochloa colona and E. crus-galli in the northern grain regions of Australia. Crop and Pasture Science, 70(11), 917–925. https://doi.org/10.1071/CP19261

Sharma, K. L., Ramakrishna, Y. S., Samra, J. S., Sharma, K. D., Mandal, U. K., Venkateswarlu, B., Korwar, G. R., & Srinivas, K. (2009). Strategies for improving the productivity of rainfed farms in India with special emphasis on soil quality improvement. Journal of Crop Improvement, 23(4), 430–450. https://doi.org/10.1080/15427520903013431

Terán-Samaniego, K., Robles-Parra, J. M., Vargas-Arispuro, I., Martínez-Téllez, M. Á., Garza-Lagler, M. C., Félix-Gurrlola, D., Maycotte-de la Peña, M. L., Tafolla-Arellano, J. C., García-Figueroa, J. A., & Espinoza-López, P. C. (2025). Agroecology and sustainable agriculture: Conceptual challenges and opportunities—a systematic literature review. Sustainability, 17(5), 1805. https://doi.org/10.3390/su17051805

Vatistas, C., Avgoustaki, D. D., & Bartzanas, T. (2023). Effect of different lighting under various wavelengths on seed germination inside a vertical farming system. International Symposium on New Technologies for Sustainable Greenhouse Systems: GreenSys2023 1426, 203–210. https://doi.org/10.17660/ActaHortic.2025.1426.29

Vicente, O. (2022). Improving agricultural production and food security under climate change conditions. AgroLife Scientific Journal, 11(1). https://doi.org/10.17930/AGL2022128

Xu, Y., Hao, L., Zhao, P., Liu, D., Deng, X., & Gan, X. (2025). Fabrication of a nano-herbicide QNC@ BA-COF with high control efficiency and reduced side effects. Advanced Agrochem. https://doi.org/10.1016/j.aac.2025.02.001

Zabala, D., Carranza, N., Darghan, A., & Plaza, G. (2019). Spatial distribution of multiple herbicide resistance in Echinochloa colona (L.) Link. Chilean Journal of Agricultural Research, 79(4), 576–585 http://dx.doi.org/10.4067/S0718-58392019000400576

Zimmermann, H. G., Moran, V. C., & Hoffmann, J. H. (2004). Biological control in the management of invasive alien plants in South Africa, and the role of the Working for Water Programme: working for water. South African Journal of Science, 100(1), 34–40. https://doi.org/10.1016/s1049-9644(03)00159-2