Comparison of Electrical Properties and Endurance of Papaya Peel and Cassava Peel-Based Bio-Batteries as Potential Alternative Energy Sources
Article Sidebar
Abstract:
Background of study: Bio-batteries represent an attractive energy solution utilizing organic substances to generate electrical energy. Organic waste materials, such as fruit peels, contain electrolytic compounds harnessed for bioelectricity generation. Cassava and papaya peels, rich in natural acids and carbohydrates, offer potential as low-cost, eco-friendly materials for bio-battery development.
Aims and scope of paper: This study investigates the electrical performance and endurance of biobatteries made from cassava peel and papaya peel subjected to varying fermentation durations (0, 2, and 4 days).
Methods: The study employed an experimental comparative approach using 1.5 V battery casings filled with fermented cassava and papaya peel pastes. Electrical parameters (voltage, current, and power) were measured using a digital multimeter. Additionally, endurance was tested by using the biobatteries to power a 1.2 W LED until discharge.
Result: Cassava peel-based biobatteries showed higher electrical output than those based on papaya peel, especially after 4 days of fermentation. The cassava battery reached a peak voltage of 1.6 V and power of 0.107 mW, while papaya reached 1.57 V and 0.105 mW. Cassava peel biobatteries also demonstrated longer endurance, operating up to 27 hours compared to 21 hours for papaya.
Conclusion: Fermentation enhances the electrical properties of fruit peel biobatteries, with 4 days as the optimal duration. Cassava peel is more effective than papaya peel due to its higher content of fermentable substrates and organic acids. This study supports the feasibility of using fermented fruit waste as sustainable bio-battery material and suggests further optimization for practical applications.
Keywords: Bio-battery, Cassava Peels, Electrical properties, Fermentation, Papaya Peels
Downloads
Copyright (c) 2025 Heriansyah Heriansyah, Novia Gena Rahmadani, Refpo Rahman, Adityas Agung Ramandani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Arizona, R., Kurniadi, S., Fernando, Y & Indarto. (2021). Direction Flow (Dc) Electric Energy Production Through Utilization Of Banana Leather And Papaya Leather Waste To Be An Environmentally Friendly Biobattery. Jurnal Renewable Energy a& Mechanics (REM). 4(1). 32-46. https://doi.org/10.25299/rem.2021.vol4(01).6006
Atina. (2015). Tegangan dan Kuat Arus Listrik dari Sifat Asam Buah. Sainmatika : Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 12(2), 28–42. https://doi.org/10.31851/sainmatika.v12i2.989
Bagaskara, A., Hapsari, A., Kurniawan, D., Tumiwa, F., Vianda, F., Padhilah, F. A., Wismadi, F. S., Puspitarini, H. D., Loeksmanto, ichsan H., Bintang, H. M., Surya, I. R. F., Christian, J., Mendrofa, M. J. S., Aji, P., Wiranegara, R. Y., & Firdausi, S. N. (2022). Imprint Indonesia Energy Transition Outlook 2023 Tracking Progress of Energy Transition in Indonesia: Pursuing Energy Security in the Time of Transition. https://iesr.or.id/wp-content/uploads/2022/12/Indonesia-Energy-Transition-Outlook_2023.pdf
Fatimah, S., Marwoto, P., & Nugroho, S. E. (2023). The Electrical Characteristics of Fruit Peel Waste as a Biobattery in Terms of Fermentation Time and Coconut (Cocos nucifera L.) Pulp Concentration. Jurnal Penelitian Pendidikan IPA, 9(SpecialIssue), 1008–1016. https://doi.org/10.29303/jppipa.v9ispecialissue.6477
Fauzia, S., Abdul, M., Ashiddiqi, H., Wa’is, A., & Khotimah, K. (2019). Fruit and Vegetables as a Potential Source of Alternative Electrical Energy. Proceeding International Conference on Science and Engineering, 2, 161–167. http://www.sunankalijaga.org/prosiding/index.php/icse/article/download/77/78
Govindarajan, N., Xu, A., & Chan, K. (2022). How pH affects electrochemical processes. Science, 375(6579), 379-380. https://doi.org/10.1126/science.abj2421
Jankowska, E., Chwialkowska, J., Stodolny, M., & Papiel, P. O. (2017). Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH. Chemical Engineering Journal, 326, 901–910. https://doi.org/10.1016/j.cej.2017.06.021
Li, C., Song, Y., Gao, N., Xu, X., Yang, W., & Hu, C. (2024). Positively Charged Amino Acid-Modulated Interfacial Chemistry and Deposition Textures for Highly Reversible Zinc Anodes. ACS: Applied Mater & Interfaces, 16(19), 24612–24623. https://doi.org/10.1021/acsami.4c02476
Liu, S., Wang, Z., Qiu, S., & Deng. F. (2024). Mechanism in pH effects of electrochemical reactions: a mini- review. Carbon Letters, 34, 1269-1286. https://doi.org/10.1007/s42823-024-00724-2
Mauliza, R., & Afrida, J. (2024). Effect of Fermentation Duration on The Electrical Properties of Ketapang and Tamarind Extracts. EduFisika: Jurnal Pendidikan Fisika, 9(3), 332–342. https://doi.org/10.59052/edufisika.v9i3.40532
Nuryanti, S., Rahmawati, S., Ningsih, P., Santoso, T., & Pondanan, Y. A. (2022). UTILIZATION O. F CASSAVA PEEL (Manihot esculenta) AS BIO-BATTERY. Rasayan Journal of Chemistry, 2022(Special Issue), 249–254. https://doi.org/10.31788/RJC.2022.1557093
Ramadana, A. S., Ballqis, A. S., Khairunnisa, Lazulva, & Yusbarina. (2022). The Potential of Bio-Battery Biomass as an Alternative Energy Source (Review Article). The International Conference of Humanities and Social Science (ICHSS) 2022, 317–327. https://programdoktorpbiuns.org/index.php/proceedings/article/view/163
Sasongko, A. A., Bachri, A., & Laksono, A. B. (2024). An Analysis of The Bio-Battery Efficiency from Fruits and Vegetables’ Waste as An Alternative to Energy Sources. In AI and IoT Integration: Empowering a Connected and Sustainable Future (pp. 114–124). UTHM Publisher. https://publisher.uthm.edu.my/bookseries/index.php/eiccs
Segundo, R. F., Magaly, D. L. C., Benites, S. M., Daniel, D. N., Angelats-Silva, L., Díaz, F., & Luis, C. C. (2022). Generation of Electricity Through Papaya Waste at Different pH. Environmental Research, Engineering and Management, 78(4), 137–146. https://doi.org/10.5755/j01.erem.78.4.31912
Setiawan, R., Eddy, S., & Arif Setiawan, A. (2023). Pemanfaatan Logam Tembaga dan Seng Sebagai Sel Volta Dalam Media Limbah Buah-Buahan. Jurnal Penelitian Fisika Dan Terapannya (JUPITER), 5(1), 1–9. https://doi.org/10.31851/jupiter.v5i1.9128
Sigalingging, R., & Sitorus, Y. (2024). Journal of Sustainable Agriculture and Biosystems Engineering Study of Fruit Waste as Bio-battery Materials for Alternative Electricity. Journal of Sustainable Agriculture and Biosystems Engineering, 02(01), 1–010. https://doi.org/10.32734/jsabe.v2i01.14683
Sitanggang, J. E., Latifah, Z., Sopian, O., Saputra, Z., Bayu, A., & Nandiyanto, D. (2021). Analysis of Mixture Paste of Cassava Peel and Pineapple Peel as Electrolytes in Bio Battery. https://doi.org/10.17509/xxxx.vxix
Yang, D., Li, X., Wu, N., & Tian, W. (2016). Effect of moisture content on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2/graphite battery. Electrochimica Acta, 188, 611–618. https://doi.org/10.1016/j.electacta.2015.12.063
Yardeni, J. L., Amit, M., Ashkenasy, G., & Ashkenasy, N. (2016). Sequence dependent proton conduction in self-assembled peptide nanostructures. Nanoscale, 8(4), 2358–2366. DOI https://doi.org/10.1039/C5NR06750B
Zhang, S., Zhoa, X., Li, T., Liu, J., Huang, F., & Lin, T. (2023). Organic electrodes with multi-role natural amino acid groups for sodium-ion batteries with high-capacity and long-life. Science China Materials, 66, 3817–3826. https://doi.org/10.1007/s40843-023-2545-y