Performance Analysis of Bio-batteries from Organic Waste for Alternative Electric Energy
Article Sidebar
Abstract:
Background of study: Biobatteries are an innovative form of renewable energy technology that utilize organic materials to produce electricity through electrochemical reactions. Organic waste such as banana and pineapple peels contains natural electrolytes, making them potential sustainable and eco-friendly energy sources.
Aims and scope of paper: This study aims to evaluate the performance of simple biobatteries using banana and pineapple peels as electrolyte materials. The research focuses on measuring voltage and current generation over seven days and assessing the stability and durability of each type of organic waste.
Methods: Biobatteries were assembled using zinc (Zn) electrodes as the anode and carbon rods as the cathode. The peels were ground into a paste and used as the electrolyte. Daily measurements of voltage and current were taken for seven consecutive days to analyze performance trends.
Result: Test results showed that both types of biobatteries were capable of producing sufficient voltage and current to power simple electronic devices such as small LEDs, wall clocks, and basic household appliances. However, biobattery performance decreased over time due to water evaporation, degradation of active compounds, and environmental influences such as temperature and humidity. Overall, banana peels performed more consistently than pineapple peels.
Conclusion: This research demonstrates that organic waste can serve as a viable material for renewable energy generation. Biobatteries made from fruit peels not only help reduce waste but also have potential for educational use and community energy initiatives.
Keywords: Alternative electricity, Alternative energy, Banana peel waste, Bio-battery, Pineapple peel waste
Downloads
Copyright (c) 2025 M. Arya Nata Raharjo, Amanda Fajar Arifia, Kartini Herlina

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Adekunle, A., Raghavan, V., & Tartakovsky, B. (2019). Real-Time Performance Optimization and Diagnostics during Long-Term Operation of a Solid Anolyte Microbial Fuel Cell Biobattery. Batteries, 5(1), 9. https://doi.org/10.3390/batteries5010009
Alawiyah, S., Romadhoni, W., Ulva, S. M., & Sulaiman, D. (2023). Analisis Sifat Kelistrikan Pada Campuran Kulit Nanas Dan Kulit Singkong Sebagai Energi Terbarukan. Jurnal Sains Benuanta, 2(1), 46–50. https://doi.org/10.61323/jsb.v2i1.65
Andini, S. J. (2024). Pengaruh Waktu Fermentasi Terhadap Kelistrikan Bio-Baterai Pada Larutan Buah Mengkudu (Morinda citrifolia L.). Laboratory Journal, 1(1), 7-11. https://doi.org/10.3369/jlst.1.1.7-11
Dewan, A., & Lewandowski, Z. (2010). The Microbial Fuel Cell As An Education Tool. Chemical Engineering Education, 44(2). Google Scholar
Fitrawati, F., & Saehana, S. (2021). Pengembangan baterai sederhana dari kaktus untuk digunakan sebagai media pembelajaran fisika. Jurnal Riset dan Kajian Pendidikan Fisika, 8(1), 24. https://doi.org/10.12928/jrkpf.v8i1.20796
Fitrya, N., Wirman, S. P., Dalimunthe, L. H., Welly, I. S., & Syahputra, R. F. (2023). Peningkatan Kinerja Bio-Baterai Nanas Dengan Penambahan Pasta Aki Bekas dan Natrium Benzoat. POSITRON, 13(2), 125. https://doi.org/10.26418/positron.v13i2.70052
Fitrya, N., Wirman, S. P., & Halwani, P. (2023). Uji Karakteristik Elektrolit Ampas Kulit Nanas dengan Penambahan MgCl2, NaCl, dan KCl. Photon: Jurnal Sain dan Kesehatan, 13(2). https://doi.org/10.37859/jp.v13i2.4394
Nusantoro, S., & Awaludin, A. (2020). Pemanfaatan Limbah Ternak Sebagai Sumber Energi Terbarukan (Renewable Energy) Dalam Upaya Menuju Masyarakat Mandiri Energi. Seminar Nasional Hasil Pengabdian Masyarakat 2020. Google Scholar
Rojas-Flores, S., De La Cruz-Noriega, M., Nazario-Naveda, R., Benites, S. M., Delfín-Narciso, D., Angelats-Silva, L., & Murga-Torres, E. (2022). Use of Banana Waste as a Source for Bioelectricity Generation. Processes, 10(5), 942. https://doi.org/10.3390/pr10050942
Rojas-Flores, S., Nazario-Naveda, R., Benites, S. M., Gallozzo-Cardenas, M., Delfín-Narciso, D., & Díaz, F. (2022). Use of Pineapple Waste as Fuel in Microbial Fuel Cell for the Generation of Bioelectricity. Molecules, 27(21), 7389. https://doi.org/10.3390/molecules27217389
Roselle Angela G. Torres, C., C. Espiritu, R., James Z. Doydoy, N., Askenez S. Deocares, J., Jay P. Saldo, I., & Jade P. Dandoy, M. (2023). Electric Generation Capacities of Three Varieties of Banana Peel Using Microbial Fuel Cell. World Journal of Agricultural Research, 11(2), 39–43. https://doi.org/10.12691/wjar-11-2-1
S, N., & Perumal, M. (2024). Synergistic Valorisation of Fruit and Vegetable Waste for Bioenergy Production: A Review. International Research Journal of Multidisciplinary Technovation, 61–79. https://doi.org/10.54392/irjmt2455
Salawali, R. T., & Lestari, S. A. (2024). Utilization of Biomass Waste from Banana (Musa Paradisiaca) and Breadfruit (Artocarpus Communis) Peel for Development of Bio-Batteries. Jurnal Sains dan Teknik Terapan, 2(1), 1-8. Google Scholar
Sitanggang, J. E., Latifah, N. Z., Sopian, O., Saputra, Z., Nandiyanto, A. B. D., & Anggraeni, S. (2021). Analysis of Mixture Paste of Cassava Peel and Pineapple Peel as Electrolytes in Bio Battery. ASEAN Journal of Science and Engineering, 1(2), 53–56. https://doi.org/10.17509/ajse.v1i2.34225
Sulistyowati, R., Wati, R., Saputra, E., Rahman, D. Y., & Iswan, J. (n.d.). Pengembangan Bio-Baterai Dengan Elektrolit Padat Berbasis Tepung Tapioka Dan Komposit Serbuk Kulit Udang/Air Laut Sebagai Sumber Ion. JoP, 10(2), 1-7. https://doi.org/10.22437/jop.v10i2.41920
Tabish, A. N., Farhat, I., Irshad, M., Hussain, M. A., Usman, M., Chaudhary, T. N., Fouad, Y., Raza, S., Ashraf, W. M., & Krzywanski, J. (2023). Electrochemical Insight into the Use of Microbial Fuel Cells for Bioelectricity Generation and Wastewater Treatment. Energies, 16(6), 2760. https://doi.org/10.3390/en16062760
Tadesse, M. G., Kasaw, E., & Lübben, J. F. (2023). Valorization of Banana Peel Using Carbonization: Potential Use in the Sustainable Manufacturing of Flexible Supercapacitors. Micromachines, 14(2), 330. https://doi.org/10.3390/mi14020330
Tadesse, M. G., Simon, N., & Lübben, J. F. (2024). Development of textile based supercapacitors using activated carbon from renewable banana peels and conductive polymer composites. Discover Applied Sciences, 6(12). https://doi.org/10.1007/s42452-024-06347-6
Tagliaferri, S., Gaspard, L., Au, H., Mattevi, C., Titirici, M.-M., & Crespo-Ribadeneyra, M. (2024). Nature-inspired batteries: From biomaterials to biomimetic design strategies. Green Chemistry, 26(12), 6944–6958. https://doi.org/10.1039/d4gc00638k
Tan, T. T. M., & Lee, Y.-J. (2022). Building Improvised Microbial Fuel Cells: A Model Integrated STEM Curriculum for Middle-School Learners in Singapore. Education Sciences, 12(6), 417. https://doi.org/10.3390/educsci12060417
Welly, I. S., Fitrya, N., Wirman, S. P., & Dalimunthe, L. H. (2024). Elektrolit Padat Biobaterai Limbah Kulit Nanas dengan Penambahan NaOH dan Aki Bekas untuk Meningkatkan Tegangan dan Nilai Arus. JIPFRI (Jurnal Inovasi Pendidikan Fisika dan Riset Ilmiah), 8(1), 1–8. https://doi.org/10.30599/jipfri.v8i1.2769
Yaqoob, A. A., Al-Zaqri, N., Alamzeb, M., Hussain, F., Oh, S.-E., & Umar, K. (2023). Bioenergy Generation and Phenol Degradation through Microbial Fuel Cells Energized by Domestic Organic Waste. Molecules, 28(11), 4349. https://doi.org/10.3390/molecules28114349