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Article Info Abstract

Background: Maintaining probiotic viability throughout food processing, storage,
Article history: and gastrointestinal transit remains a critical limitation in the development of

functional foods. Although microencapsulation is widely applied to enhance
probiotic stability, the exploration of multifunctional wall materials that combine
protective performance with added health benefits is still limited. Fungal $-glucans
represent a promising alternative due to their structural robustness and inherent
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prebiotic functionality.
Objective: This study aimed to systematically evaluate fungal -glucans derived

Keywords: from Agaricus, Pleurotus, Coprinus, and yeast as encapsulating agents for probiotic
encapsulation delivery, with a focus on their ability to enhance probiotic stability under storage,
probiotics gastrointestinal, and thermal stress conditions.

fungal B-glucans Methods: Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus casei
microcapsules were microencapsulated using fungal 3-glucans via freeze-drying. Encapsulation
simulated efficiency, refrigerated storage stability (4 °C, 45 days), survival under simulated

gastric (pH 2.0) and intestinal conditions, and thermal resistance (55-75 °C) were
evaluated. Microcapsule morphology and structural interactions were analyzed
using SEM, ATR-FTIR spectroscopy, and particle size analysis.

Results: Encapsulation yields ranged from 63.83% to 76.63%, with Coprinus (-
glucan consistently providing the highest efficiency and probiotic retention.
Encapsulated probiotics exhibited significantly improved viability during storage
and showed enhanced resistance to acidic, bile, and thermal stresses compared to
free cells. SEM revealed porous microstructures conducive to effective cell
entrapment, while ATR-FTIR confirmed molecular interactions between probiotics
and B-glucan matrices.

Conclusion: Fungal B-glucans, particularly those derived from Coprinus and
Pleurotus, function as effective and multifunctional encapsulating materials,
offering both physical protection and probiotic potential. These findings highlight
fungal B-glucan-based microcapsules as a robust delivery system for probiotics,
with strong prospects for application in next-generation functional foods and
nutraceutical formulations.

To cite this article: Khan etal. (2025). To Utilize Fungal Beta-Glucan As An Encapsulating Agent For Delivery Of Probiotics.
Journal of Food Sciences And Nutrition Innovations, 1(2), 108-122.

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©2025 by author/s

INTRODUCTION

Probiotics are live microbial supplements known to play an important role in controlling
gastrointestinal infections, enhancing immune function, alleviating lactose intolerance, and reducing
serum cholesterol levels (Maleki, Homayouni, Khalili, & Golkhalkhali, 2016). To deliver these health
benefits, probiotic-containing products must retain a minimum viable count of approximately 107
CFU/g at the point of consumption. Nevertheless, preserving probiotic viability remains a significant
challenge due to stress conditions encountered during food processing, storage, and transit through
the gastrointestinal tract (Neish, 2009). According to global market analyses, Probiotics accounted
for nearly 30% of the functional food market, representing an annual value of about US$50 billion,
with projections indicating growth from US$62.6 billion in 2014 to US$96.0 billion by 2020 at a
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compound annual growth rate of 7.40% (Corcoran et all., 2008). Consequently, numerous strategies
have been explored to enhance probiotic survival within intestinal microflora, including protection
against gastric acidity, enzymatic degradation, and bile salt exposure in the small intestine, as
probiotic viability during food processing remains a major limitation in functional food applications
(Pillai et all., 2012). Probiotics also contribute to intestinal barrier function by stimulating mucin
production, increasing the expression of tight junction proteins, and preventing pathogen-induced
disruption of epithelial integrity (Johnson et all., 2008). In this regard, microencapsulation using
suitable wall materials offers an effective physical barrier that enhances probiotic resistance to
unfavorable environmental conditions encountered in both commercial food systems and the
gastrointestinal tract (Anal & Singh, 2007). In microencapsulation systems, the probiotic cells
constitute the core material, while the surrounding protective layer is referred to as the wall
material; commonly used food-grade encapsulants include chitosan, alginate, xanthan gum, gellan,
gelatin, and whey proteins. Recently, fungal -glucans have attracted attention due to their prebiotic
properties, and encapsulating probiotics within 3-glucan-based matrices may provide additional
benefits by promoting the growth and activity of beneficial intestinal microflora (Mitsou et al., 2010).

METHOD

Encapsulation of probiotics using fungal 3-glucan

Microencapsulation of probiotics was carried out using a pilot-scale freeze dryer (Operon,
[PS-55) operated at temperatures ranging from -40 to -50 °C, with the freeze-drying process
completed within 20 h. Prior to freezing, skim milk powder was incorporated into the drying medium
as a cryoprotectant. The freeze-dried products were packed in polyethylene bags, sealed with
aluminum foil, and stored at 4 °C until further analysis. Mushroom-derived 3-glucans were extracted
from Agaricus bisporus, Pleurotus ostreatus, and Coprinus atramentarious following the procedure
described by Smiderle et al. (2013). B-Glucan from yeast was obtained from baker’s yeast
(Saccharomyces cerevisiae) using the method reported by Lee et al. (2001).

Encapsulation yield of probiotics
To determine encapsulation efficiency, one gram of microcapsules was resuspended in 9 mL of

phosphate buffer (0.1 mol/L, pH 7.0) and homogenized for 15 min. Viable cell counts (CFU/g) were
estimated by plating appropriate dilutions on selective agar media followed by incubation at 37 °C
for 48 h (Mandal et al., 2006). Encapsulation yield (EY), representing the survival of probiotic cells
during microencapsulation, was calculated using the following equation:

EY(%) =2-x 100

where N denotes the viable cell count (log CFU/g) recovered from the microcapsules and N
represents the initial viable cell count (log CFU/g) added during preparation.

Storage stability of encapsulated probiotics
Storage stability of encapsulated probiotics was evaluated by determining viable cell counts
at 15-day intervals over a period of 1.5 months during storage at 4 °C.

Survival in simulated gastric juice (SGJ)

Simulated gastric juice (SGJ) was prepared using sodium chloride (9 g/L) containing pepsin
(3.0 g/L), and the pH was adjusted to 2.0 with hydrochloric acid (Altman, 1961). Microcapsules (0.2
g) containing entrapped Lactobacillus cells were suspended in 10 mL of SGJ and incubated at 37 °C
under constant shaking at 50 rpm for 5, 30, 60, and 120 min. Probiotic survival in SG] was expressed
as log CFU/g.

Survival in simulated intestinal juice (SI])
For thermal tolerance analysis, one gram of microcapsules and 1 mL of free cell suspension
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were transferred into test tubes containing 10 mL of sterile distilled water. The samples were
subjected to heat treatments at 55, 65, and 75 °C for 10 min, as described by Sabikhi et al. (2010).

Survival of free and microencapsulated cells under heat treatments

For thermal tolerance analysis, one gram of microcapsules and 1 mL of free cell suspension
were transferred into test tubes containing 10 mL of sterile distilled water. The samples were
subjected to heat treatments at 55, 65, and 75 °C for 10 min, as described by Sabikhi et al. (2010).

Morphological characterization of the microcapsules

The surface morphology of probiotic-loaded fungal B-glucan microcapsules was examined
using scanning electron microscopy (SEM) (Hitachi S-300H, Tokyo, Japan). Samples were
mounted on aluminum stubs with double-sided adhesive tape and coated with a thin gold layer
using a sputter coater. After gold—palladium coating, micrographs were obtained at an accelerating
voltage of 5 kV.

Conformational study by using ATR-FTIR

ATR-FTIR spectra of B-glucan-encapsulated probiotics were recorded using an ATR-FTIR
spectrophotometer (CARY 630, Agilent Technologies, USA) at room temperature over a spectral
range of 400-4000 cm™.

Statistical analysis

All data were expressed as mean values with corresponding standard deviations. Statistical
analysis was performed using SPSS software version 10.1 (USA). Analysis of variance (ANOVA) was
applied, and significant differences among means were determined using Duncan’s multiple range
test at a 5% significance level.

RESULTS AND DISCUSSION

Encapsulation yield of probiotics

izl Agaricus f-glucan
Pleurotus p-glucan
= B Coprinus p-glucan
[ Yeastp-glucan

Encapsulation vield (%0)

L plantanam
Probiotics

Fig. 1: Encapsulation yield of probiotics

The encapsulation yield (%) of L. plantarum, L. brevis, and L. casei entrapped within 3-
glucans derived from Agaricus, Pleurotus, Coprinus, and yeast is illustrated in Fig. 1. The
encapsulation efficiency ranged from 63.83-74.83% for L. plantarum, 66.63-76.63% for L. brevis,
and 69.50-71.83% for L. casei. A statistically significant difference (p<0.05) was detected among the
four B-glucan sources when used as encapsulating agents for L. casei. In contrast, no significant
difference (p>0.05) was observed among the fungal B-glucans for L. brevis. For L. plantarum,
Agaricus and Pleurotus (3-glucans showed no significant difference (p>0.05), whereas Coprinus and
yeast [3-glucans differed significantly (p<0.05) from each other. Encapsulation within a protective
matrix is known to safeguard probiotic cells against adverse environmental conditions encountered
during processing, storage, and gastrointestinal transit (Desai & Park, 2005; Heidebach et al., 2012).
Fungal B-glucans have previously been recognized for their prebiotic potential and suitability as
encapsulating materials (Shi etal., 2013). The present findings are consistent with Shah etal. (2016),
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who reported encapsulation efficiencies of 78.95%, 71.08%, and 72.02% for L. brevis, L. plantarum,
and L. casei, respectively, using barley (-glucan microspheres prepared by the emulsion technique.

Storage stability of encapsulated Probiotics

Table 1: Storage stability of free and encapsulated probiotics using fungal B-glucans expressed as

log cfu g
B-glucan Storage time (Days)
Probiotics (Wall material) 0 1 3 4
5 0 5
L. Free 3.76+£0.42'8 3.72+#0.25'"  0.76+0.25'°  0.60+0.30'°
plantarum Agaricus 5.72+0.42%2  4.45+0.25%°  1.65+0.21%°  1.16+0.25%
Pleurotus 6.25+0.28%  4.44+051% 2.13+0.32%  1.23+0.20%
Coprinus 7.38+0.18% 4.76+0.25%  1.76+0.25°%  1.26+0.35%
Yeast 7.20£0.20%  4.50+£0.20%°  1.81+0.07%% 0.81+0.07'%
L. brevis Free 7.16+£0.40'® 3.65+0.47'°  2.70+0.50'¢  1.53+0.30%
Agaricus 7.93+0.50% 6.76+0.32%  4.0£0.50*  2.63+0.15™
Pleurotus 7.66+0.152 6.80+0.26%°  4.80+0.26%  3.35+0.39%
Coprinus 8.66+0.30% 7.03+0.47%®  4.70+0.50%  3.46x0.41%¢
Yeast 8.3620.41% 6.90+0.15%  4.93+0.45%°  3.30+0.45%
a
L. casei Free 5.83+0.51" 4.13+0.50"  2.56+0.20"°  1.63+0.25'
Agaricus 8.73+0.41% 590+0.70®  4.16+0.35*  2.50+0.10%
Pleurotus 7.83+0.51% 6.70+0.26%®  4.36+0.51%*  2.63+0.25%
a
Coprinus 12.16+0.40* 8.80+0.72%*  5.23+0.66%  3.30+0.36*
a
Yeast 7.81+0.48% 6.76+0.15%®  4.26+0.45%*  2.66+0.25%

a

Different alphabetical letters and the numeric indicate significant difference (p< 0.05) among samples in the same
row and column respectively.

The storage stability of encapsulated probiotics maintained at 4 °C was evaluated at 15-day
intervals over a 45-day period (Table 1). At day 0, free L. plantarum exhibited a viable count of 3.76
log cfu/g, whereas microspheres formulated with Agaricus, Pleurotus, Coprinus, and yeast (3-glucans
showed values of 5.72, 6.25, 7.38, and 7.20 log cfu/g, respectively. Except for Coprinus- and yeast-
based B-glucans, a significant difference (p<0.05) was observed between free and encapsulated L.
plantarum at the initial storage period. With prolonged storage (15-45 days), the viability of free L.
plantarum declined markedly from 3.72 to 0.60 log cfu/g. A significant reduction (p<0.05) was also
recorded for encapsulated L. plantarum in Agaricus (4.45-1.16), Pleurotus (4.44-1.23), Coprinus
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(4.76-1.26), and yeast [3-glucans (4.50-0.81 log cfu/g). Similar decreasing trends were noted for
encapsulated L. brevis and L. casei as storage duration increased. Overall, encapsulation in fungal §3-
glucans substantially reduced the loss of cell viability during refrigerated storage by acting as a
physical barrier against environmental stressors (Mitsou et al., 2010). These observations
corroborate earlier reports demonstrating enhanced storage stability of encapsulated probiotics
under refrigerated conditions (Heidebach et al.,, 2010; Shah et al., 2016).

Survival in simulated gastric juice (SGJ) conditions

Table 2: Viability of probiotics subjected to simulated gastric juices at different times (log cfu g1)

Time (min.)
o B-glucan
Probiotics ) 30 60
(wall material)
120
L. Free 5.26+0.64'% 4.31+0.35" 3.90+0.36'2 1.46+0.15™
plantaru ¢
m Agaricus  6.80+0.26”° 5.13+0.25% 4.36+0.35% 1.90+0.40%
a c
Pleurotu 6.46+0.49%% 523+0.50%° 4.2240.33%® 1.50+0.24
S b c
Coprinus  7.60+0.20  5.43+0.45% 4.23+0.23”°  2.13+0.56%*
c
Yeast 7.06+0.26% 6.49+0.29"  4.31+0.45% 2.31+0.21%
c
L. brevis Free 6.73+1.25% 6.13+0.30'% 4.5+1.15  1.73+0.30%
Agaricus  7.76x0.32'2  7.0320.15% 6.3£0.36°°  3.830.41%
a
Pleurotu 6.96+0.34'% 578+0.50%° 3.69+0.44%¢ 2.47+0.30%
S
Coprinus 8.40+0.36% 7.36+0.45" 553+0.41% 2.06+0.30%
Yeast 7.73+0.24'2  6.20£0.19% 3.51+0.43'¢ 2.07+0.25%
a
L. casei Free 5.36+0.89'% 4.56+0.06' 3.43+1.25' 2.03+0.75%%
b
Agaricus 6.91+0.20% 4.95+0.17%° 3.59+0.15'¢ 2.31+0.29'%
a d
Pleurotu  6.86+0.28%% 5.38+0.35%° 3.75+0.56% 2.70+0.421%
S c

112 | Journal of Food Sciences And Nutrition Innovations



Khan, et al
To Utilize Fungal Beta-Glucan As An Encapsulating.....

Coprinus  6.70£0.26%¢ 5.90+0.10* 5.30+0.36% 3.53+0.47%

Yeast 7.00£0.41% 5.68+0.39%* 3.76+0.14% 3.02+0.28%
b c

Different alphabetical letters and the numeric indicate significant difference (ps 0.05) among samples in the

same row and column respectively.

An in vitro gastric model was employed to assess the tolerance of encapsulated probiotics to
acidic gastric conditions. The survival of L. plantarum, L. brevis, and L. casei encapsulated in different
fungal B-glucans following exposure to SGJ is summarized in Table 2. After 5 min of incubation, free
L. plantarum showed a viability of 5.26 log cfu/g, while encapsulated cells in Agaricus, Pleurotus,
Coprinus, and yeast (-glucans retained higher counts (6.80-7.60 log cfu/g). Increasing incubation
time up to 120 min led to a significant decline (p<0.05) in viability for both free and encapsulated
cells. However, encapsulated probiotics consistently exhibited improved survival compared to free
cells. Comparable protective effects were observed for L. brevis and L. casei, indicating that fungal 3-
glucans effectively enhanced resistance to acidic stress. This protection is attributed to the acid-
resistant nature of 3-glucans and their resistance to gastric enzymes (Iyer et al., 2005; Shah et al.,
2016). The present findings align with previous studies reporting improved probiotic survival in
simulated gastric conditions following microencapsulation (Chavarri et al., 2010; Mokhtari et al.,

2017).

Survival in simulated intestinal juice (SI]) conditions
Table 3: Viability of encapsulated probiotics subjected to simulated intestinal juice at different times

(logcfug™)

p-glucan Time (min.)
Probiotics (wall 60 90 120
material)
L. Free 1.96+0.56% 0.99+0.08%° 0.59+0.06%
plantarum Agaricus 2.09+0.17%2 1.71+0.13% 0.84+0.11%
Pleurotus 3.16+0.15% 1.99+0.224 1.19+0.17%
Coprinus 2.80+0.20% 1.63+0.10% 0.79+0.06%
Yeast 2.84+0.11% 1.50+0.07%° 0.80+0.10%
L. brevis Free 1.50+0.30%2 1.37+0.12%2 0.80+0.27%°
Agaricus 3.54+0.23% 2.03+0.06%° 1.09+0.14%
Pleurotus 3.78+0.15%% 2.41%0.29% 1.18+0.18%
Coprinus 3.48+1.19% 1.99+0.51% 1.10+0.20%
Yeast 3.48+1.19% 2.42+0.10%% 1.06+0.20'%
L. casei Free 1.53+0.11%2 0.85+0.05%° 0.44+0.02%¢
Agaricus 3.20+0.20% 2.30+0.28% 1.17+0.36%
Pleurotus 3.850.10% 2.47+0.25% 1.46+0.11%
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0.64+0.02%
0.72+0.07%

1.90+0.10%
1.90+0.112

Coprinus 2.53+0.11%
Yeast 2.51+0.17%

Different alphabetical letters and the numeric indicate significant difference (ps 0.05) among samples
in the same row and column respectively.

The impact of simulated intestinal conditions on probiotic viability is presented in Table 3.
Encapsulated probiotics demonstrated significantly higher survival rates than free cells, although
viability declined (p<0.05) with increasing incubation time from 60 to 120 min. Encapsulation using
fungal B-glucans effectively reduced bile-induced damage, thereby preserving cell integrity. Similar
observations have been reported by Rajam et al. (2015) and Mokhtari et al. (2017), who highlighted
the suitability of polysaccharide-based matrices for improving probiotic survival in intestinal
environments.

Survival of encapsulated Probiotics under heat treatments

Table 4: Thermal resistance of encapsulated probiotics in fungal 3-glucans (log cfu g-1)

B-glucan Temperature (°C)
Probiotics (wall

material) > ° "

L. plantarum  Free 2.26+0.15%% 0.81+0.28%° 0.64+0.12'°
Agaricus 2.88+0.68% 2.20+0.10% 0.74+0.2%
Pleurotus 3.42+0.30%% 2.71+0.14% 1.72+0.14%
Coprinus 3.56+0.15%% 1.18+0.30%° 0.74+0.4%
Yeast 3.48+0.23%% 2.90+0.68% 1.46+0.1%

L. brevis Free 0.69+0.05% 0.43+0.07%° 0.26+0.05%¢
Agaricus 3.09+0.07% 2.73+0.05% 1.54+0.20%¢
Pleurotus 3.17+0.25%2 2.78+0.09%% 1.72+0.13%
Coprinus 2.96+0.55% 1.81+1.02% 0.27+0.30%°
Yeast 2.34+0.22% 2.01+0.06% 0.67+0.10%

L. casei Free 1.28+0.69 1.14+0.33% 0.97+0.06%%
Agaricus 3.15+0.07% 2.26+0.17% 1.42+0.50%
Pleurotus 2.95+0.36% 1.91+0.14% 1.20+0.56%
Coprinus 3.71+0.18% 1.70+0.20% 1.24+0.32%%¢
Yeast 2.72+0.24% 2.19+0.13% 1.04+0.542%%¢

Different alphabetical letters and the numeric indicate significant difference (ps 0.05) among samples
in the same row and column respectively.

The thermal stability of free and encapsulated probiotics subjected to temperatures ranging from 55
to 75 °C is shown in Table 4. Encapsulated cells exhibited markedly higher thermal tolerance
compared to free cells. Although viability decreased with increasing temperature, [-glucan
encapsulation significantly improved heat resistance across all probiotic strains. These results
support earlier findings that microencapsulation reduces heat transfer to bacterial cells and
mitigates thermal damage (Corcoran et al., 2008; Shah et al., 2016).
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Fig. 2: Scanning Electron Microscopy of A) native Agaricus 3-glucan B) Encapsulated L. plantarum
in Agaricus B-glucan C) Encapsulated L. brevis in Agaricus -glucan, D) Encapsulated L.

casei in Agaricus (-glucan
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(©) (D)
Fig. 3: Scanning Electron Microscopy of A) native Pleurotus (3-glucan B) Encapsulated L. plantarum in
Pleurotus B-glucan C) Encapsulated L. brevis in Pleurotus -glucan, D) Encapsulated L. casei

in Pleurotus -glucan.

(©) (D)

Fig.4: Scanning Electron Microscopy of A) native Coprinus (-glucan B) Encapsulated L. plantarum in

Coprinus B-glucan C) Encapsulated L. brevis in Coprinus -glucan, D) Encapsulated L. casei

in Coprinus B-glucan.
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Fig. 5: Scanning Electron Microscopy of A) native yeast 3-glucan B) Encapsulated L. plantarum in

yeast [3-glucan with C) Encapsulated L. brevis in yeast 3-glucan & D) Encapsulated L. casei
inyeast [3-glucan.

SEM analysis of freeze-dried microcapsules (Fig. 2-5) revealed irregularly shaped particles
with porous surface structures. The observed porosity is likely a consequence of sublimation under
vacuum during freeze-drying, leading to partial structural collapse (Rathore et al., 2013). Variations
in surface morphology among microcapsules may be attributed to differences in the film-forming
properties of the fungal B-glucans employed. Comparable microstructural features have been
reported for B-glucan-based probiotic microcapsules in previous studies (Shah et al., 2016; Rajam &
Anandharamakrishnan, 2015).

Conformational study of microcapsules using ATR-FTIR

Fig. 6: ATR-FTIR spectra of (A) Agaricus B-glucan, (B) Agaricus -glucan encapsulating L.
plantarum, C) Agaricus -glucan encapsulating L. brevis & (D) Agaricus (-glucan

encapsulating L. casei
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Fig. 7: ATR-FTIR spectra of (A) Pleurotus B-glucan, (B) Pleurotus -glucan encapsulating L.
plantarum, C) Pleurotus (B-glucan encapsulating L. brevis & (D) Pleurotus (3-glucan

encapsulating L. casei.
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Fig. 8: ATR-FTIR spectra of (A) Coprinus 3-glucan, (B) Coprinus -glucan encapsulating L.
plantarum, C) Coprinus B-glucan encapsulating L. brevis & (D) Coprinus 3-glucan

encapsulating L. casei
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Fig. 9: ATR-FTIR spectra of (A) Yeast 3-glucan, (B) Yeast 3-glucan encapsulating L. plantarum, C)

Yeast B-glucan encapsulating L. brevis & (D)Yeast (3-glucan encapsulating L. casei
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ATR-FTIR spectroscopy was used to examine molecular interactions between probiotics and
fungal f-glucans (Fig. 6-9). Native (-glucans displayed characteristic absorption bands
corresponding to -OH, C-H, C=0 stretching, and (-glycosidic linkages. Encapsulated samples
exhibited additional peaks associated with bacterial cell components, confirming successful
incorporation of probiotics into the B-glucan matrix. The enhanced peak intensity observed in
microcapsules suggests interactions between glucans and bacterial cell wall constituents, in
agreement with earlier FTIR studies on probiotic encapsulation systems (Kansiz et al., 1999; Shah et

al., 2016).

Particle size analysis

Particle size distribution plays a crucial role in determining the functional and sensory properties of
microcapsules. The volume mean diameter of probiotic microcapsules prepared with different fungal
-glucans is summarized in Table 5. Agaricus B-glucan microcapsules exhibited the largest mean
diameters (59.13-63.35 pum), while yeast $-glucan microcapsules showed the smallest sizes (43.20-
47.57 pm). No significant difference (p>0.05) was observed between Coprinus and Pleurotus f3-
glucan microcapsules. The observed size variations are likely related to differences in solution
viscosity during atomization, as higher viscosity tends to generate larger droplets. These findings are
consistent with previous reports on spray- and freeze-dried probiotic microcapsules (Rajam et all.,

2015)n

CONCLUSION

The highest encapsulation yield (%) of probiotic-loaded microspheres was obtained when Coprinus
B-glucan was used as the wall material for L. plantarum, L. brevis, and L. casei, with values of
74.83+2.02%, 76.63+1.51%, and 71.83+3.25%, respectively, showing no significant difference
(p<0.05). Coprinus B-glucan microspheres also exhibited the greatest probiotic viability compared
to the other three fungal 3-glucans, with initial counts of 7.38+0.18, 8.66+0.30, and 12.16+0.40 log
cfu/g for L. plantarum, L. brevis, and L. casei, respectively, which decreased to 1.26+0.35, 3.46+0.41,
and 3.30+0.36 log cfu/g after 45 days of storage. In contrast, the lowest viability was observed in
probiotics encapsulated with Agaricus [3-glucan, where counts declined from 5.72+0.42, 7.93+0.50,
and 8.73+0.41 log cfu/g to 1.16£0.25, 2.63+0.15, and 2.50+0.10 log cfu/g for L. plantarum, L. brevis,
and L. casei, respectively.

Free probiotic cells showed a pronounced reduction in viability during storage, with L. plantarum, L.
brevis, and L. casei decreasing from 3.72+0.42, 5.00+0.40, and 5.83+0.51 log cfu/g to 0.60+0.30,
1.5340.30, and 1.63+0.25 log cfu/g, respectively, after 1.5 months. These findings clearly
demonstrate that microencapsulation significantly minimized viability losses compared to free cells.
The incorporation of fungal -glucans during microencapsulation enhanced probiotic resistance to
acidic pH and bile salts in simulated gastrointestinal conditions, resulting in higher viable counts than
the control (without prebiotics) across all treatments.

Following 5 min exposure to simulated gastric juice, the highest survival was recorded for Coprinus
B-glucan microspheres containing L. plantarum, L. brevis, and L. casei, with viable counts of
7.60+0.20, 8.40+0.36, and 6.70+0.26 log cfu/g, respectively, which declined to 2.13+0.56, 2.06+0.30,
and 3.53+0.47 log cfu/g after 120 min of incubation. Under simulated intestinal juice conditions,
encapsulated probiotics consistently showed significantly higher viability (p<0.05) than free cells.
The viable counts of free L. plantarum, L. brevis, and L. casei were 1.96+0.56, 1.50+0.30, and
1.53+0.11 log cfu/g after 60 min, further decreasing to 0.59+0.06, 0.80+0.27, and 0.44+0.02 log cfu/g
after 120 min.

Among the four fungal B-glucan matrices, Pleurotus -glucan microspheres exhibited the highest
probiotic survival during intestinal simulation. The viabilities of L. plantarum, L. brevis, and L. casei
were 3.16£0.15, 3.78+0.15, and 3.85+0.10 log cfu/g after 60 min, decreasing to 1.99+0.22, 2.41+0.29,
and 2.47+0.25 log cfu/g after 90 min, and finally to 1.19+0.17, 1.18+0.18, and 1.46+0.11 log cfu/g
after 120 min of incubation.
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Encapsulation using fungal B-glucans as wall materials also improved the thermal tolerance of
probiotics when exposed to temperatures of 55, 65, and 75 °C for 10 min. SEM analysis revealed
porous surface morphology of the microspheres produced with different wall materials, resulting
from moisture removal during drying. The presence of pores facilitated probiotic entrapment,
leading to densely loaded microcapsules, while structural interactions between probiotics and f3-
glucans were further confirmed by ATR-FTIR analysis.
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