

Nutritional Prospect of Aphrodisiac Blend from *Cyperus esculentus*, *Phoenix dactylifera*, and *Zingiber officinal* in Modulating Sexual Functions

***Muhammed Maikarfi**

¹Department of Applied Chemistry,
College of Science and Technology,
Kaduna Polytechnic, P.M.B. 2021, Kaduna,
Nigeria

**Damilola Fehintola
Daramola**

Department of Mathematics and
Science Education, College of
Technical and Vocational Education,
Kaduna Polytechnic, P.M.B. 2021,
Kaduna, Nigeria

**Adamu Usman
Ibrahim**

Department of Applied
Chemistry, College of Science
and Technology, Kaduna
Polytechnic, P.M.B. 2021,
Kaduna, Nigeria

Abdulazeez Anjorin

Department of Biochemistry,
Kwara State University, P.M.B
1530, Malete, Nigeria

*** Corresponding author:**

Muhammed Maikarfi College of Science and Technology, Nigeria. [✉ mmuhammed02@kadunapolytechnic.edu.ng](mailto:mmuhammed02@kadunapolytechnic.edu.ng)

Article Info

Article history:

Received: October 6, 2025

Revised: November 12, 2025

Accepted: December 25, 2025

Keywords:

Aphrodisiac,
Micronutrients Minerals
Proximate analysis,
Sexual dysfunction, Vitamins

Abstract

Background of Study: Sexual dysfunction is a multifactorial condition that can be influenced by micronutrient status. In Nigeria, locally prepared beverages are widely consumed as aphrodisiacs to enhance libido, erectile function, sperm quality, and fertility, yet combined formulations remain poorly studied. This study aimed to evaluate the nutritional composition of a powdered beverage blend made from dried tiger nut, date, and ginger in a 50:40:10 ratio, and to examine literature-based evidence on the effects of its components on sexual function.

Aim and Scope of Study: The blend was analyzed for proximate composition, vitamin content, and mineral levels using standard analytical methods. Relevant peer-reviewed studies were also reviewed to identify the biological roles of the blend's components in sexual and reproductive health. Data were analyzed using descriptive statistics, independent t-tests, and one-way ANOVA at $p \leq 0.05$.

Results: Results showed that the beverage was rich in carbohydrates (76.20%), dietary fiber (7.17%), and fat (9.67%), with low moisture content. It contained appreciable levels of essential minerals, including magnesium, zinc, selenium, copper, and manganese, as well as vitamins A, B₆, B₉, B₁₂, and C. Literature evidence indicated that tiger nut, date, and ginger contribute to sexual function through modulation of hormonal activity, gene expression, spermatogenesis, and erectile mechanisms.

Conclusion: In conclusion, the tiger nut–date–ginger beverage possesses a favorable nutrient profile that supports reproductive physiology. While the findings suggest its potential as a nutritional adjunct for improving sexual function, further experimental and clinical studies are needed to validate its efficacy and safety.

To cite this article: Maikarfi et al. (2025). Nutritional Prospect of Aphrodisiac Blend from *Cyperus esculentus*, *Phoenix dactylifera*, and *Zingiber officinal* in Modulating Sexual Functions. *Journal of Food Sciences And Nutrition Innovations*, 1(2), 80-90.

This article is licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by/4.0/) ©2025 by author/s

Introduction

Sexual dysfunction commonly refers to persistent difficulty an erection of sufficient quality sufficient for sexual intercourse ([Strong et al., 2008](#)). This is a result of a combination of factors including psychological imbalance, chronic diseases, lifestyle amongst others. Its prevalence is high, with estimates suggesting it affects roughly one in four men and over half of women worldwide ([Masoudi et al., 2022](#)).

Various plants are widely utilized as aphrodisiacs to address sexual dysfunctions and enhance fertility, offering concomitant nutritional benefits that may contribute to improved sexual performance and libido ([Sumalatha et al., 2010](#)). Enhancements in general health, increased blood flow, and the stimulation of anabolic and growth hormones can lead to burst of energy, which may translate into heightened sexual desire, in addition to the plant's direct stimulatory effects ([Omolola et al., 2012](#)). These plants contain intrinsic bioactive compounds and other nutrients that contribute to their sexual function-modulating properties ([Okigbo et al., 2008](#)).

Diet and nutrition are becoming increasingly recognized for their essential roles in male and female reproductive health. While there is a growing understanding of how macro and micronutrients dietary patterns are important factors in promoting reproductive health, prompting comprehensive investigation of these nutrients, that have a profound influence on human reproductive health ([Yilmaz-Akyuz et al., 2019](#)).

Micronutrient malnutrition continues to pose a major public health challenge in Nigeria, despite the widespread consumption of cereals, nuts, fruits, and vegetables. The diverse array of traditional crops not only offers affordable sources of essential micronutrients but also contribute to functional health, with indigenous beverages from these crops commonly consumed as refreshment or part of main meals ([Ariyo et al., 2021](#)) and for their nutritional ([Corbo et al., 2014](#)) and functional health values ([Yilmaz-Akyuz et al., 2019](#)). Many of these are readily available thereby contributing to the efforts at promoting sexual health nutrition.

Functional foods are positioned as viable dietary strategies supporting reproductive and sexual health. A functional aphrodisiac blend composed of tiger nut (*Cyperus esculentus*), date fruit (*Phoenix dactylifera*), and ginger (*Zingiber officinale*) combines complementary nutrients that may beneficially influence sexual function through food-based mechanisms. Tiger nut is characterized by a high content of dietary fiber, arginine, monounsaturated fatty acids, and phenolic compounds, which have been linked to improved endothelial function and nitric oxide-mediated vasodilation, a central physiological process underlying erectile response ([Adejuyitan, 2011](#)). Date fruit contributes rapidly metabolizable carbohydrates, essential minerals, and bioactive flavonoids and sterols, conferring antioxidant capacity and potential modulation of reproductive hormone activity, thereby supporting sexual vitality and sperm quality ([El-Hadrami & Al-Khayri, 2012](#)). Ginger, widely recognized as a functional spice, contains gingerols and shogaols that exhibit antioxidant, anti-inflammatory, and circulatory enhancing effects, with experimental evidence demonstrating improvements in testosterone levels, spermatogenesis, and sexual behavior ([Banihani, 2018](#)).

Despite extensive ethnobotanical documentation of aphrodisiac plants, a critical research gap remains regarding the scientific evaluation of composite food-based aphrodisiac formulations, particularly those combining commonly consumed indigenous crops. Most existing studies focus on single plant extracts or pharmacological preparations, with limited attention to nutritionally relevant blends, their functional composition, and their potential synergistic effects on sexual function. Furthermore, empirical evidence linking such blends to sexual health outcomes within a functional food's framework is still scarce.

Therefore, the present study aims to evaluate the sexual function-modulating potential of a composite aphrodisiac blend formulated from selected indigenous food crops, with emphasis on its nutritional composition and functional properties. The study is guided by the hypothesis that the synergistic interaction of bioactive compounds and essential nutrients within the blend will positively influence sexual function and related physiological parameters. By addressing this gap, the study seeks to provide scientific evidence supporting the development of culturally acceptable, nutritionally enriched functional foods for the promotion of sexual and reproductive health.

Methodology

Sample Collection and Identification

Tiger nut, date and ginger were randomly bought from Kasuwar baci market, Tudun Wada, Kaduna. It was further identified in the Department of Biology, Kaduna State University, Kaduna with voucher numbers; KASU/B5H/349, KASU/B5H/552 and KASU/B5H/9877 respectively.

Sample Preparation

Fresh tubers of tiger nuts, date fruit and ginger were first sorted to remove extraneous materials, deseeded, washed and rinsed with distilled water. The clean plant samples were then dried and ground to fine powder. Any bad or cracked nuts and seeds that could affect taste and quality were also removed. A blend was prepared by mixing 50 % tiger nut, 40 % date and 10 % ginger totaling 500 g. The resulting powdered blend was stored in an airtight container at room temperature until further analysis.

Chemical Analysis

Proximate Analysis

Proximate composition of the blend including moisture, protein, fat, ash, crude fiber, and carbohydrate content was determined according to the methods described by the Association of Analytical Chemists ([AOAC, 2005](#)). All analysis was performed in triplicates.

Moisture Content Determination

Two (2 g) of the sample was placed in a clean, pre-weighed dish and dried in an oven at 105 °C until a constant weight was obtained. The sample was then cooled in a desiccator and reweighed. The percentage of moisture was calculated as the loss in weight expressed as a percentage of the original sample weight.

Formula: Moisture (%) = $(W_2 - W_3) / (W_2 - W_1) \times 100$

Keys:

W_1 = Weight of empty dish (g)

W_2 = Weight of dish + fresh (wet) sample (g)

W_3 = Weight of dish + dry sample after drying (g)

Ash Content Determination

Five (5 g) of the dried sample was placed in a crucible and incinerated in a muffle furnace at 550 °C until a light grey or white ash was obtained. The crucible was cooled in a desiccator and weighed. The percentage ash content was calculated from the residue remaining after combustion.

Formula: Ash (%) = $(C_3 - C_1) / (C_2 - C_1) \times 100$

Keys:

C_1 = Weight of empty crucible (g)

C_2 = Weight of crucible + sample before ashing (g)

C_3 = Weight of crucible + ash after ashing (g)

Crude Protein Determination (Kjeldahl Method)

The nitrogen content of the sample was determined using the Kjeldahl method. The sample was digested with concentrated sulfuric acid and a catalyst until a clear solution was obtained. The digest was made alkaline, and the released ammonia was distilled and collected in boric acid solution. The distillate was titrated with standard acid to determine the amount of nitrogen present. The crude protein content was calculated by multiplying the nitrogen value by a factor of 6.25.

Formula: Crude Protein (%) = $N (\%) \times 6.25$

Keys:

$N (\%)$ = Percentage of nitrogen obtained from titration

6.25 = Protein conversion factor (based on 16% nitrogen content)

Crude Fat Determination (Soxhlet Method)

Five (5 g) dried sample was extracted continuously with petroleum ether using the Soxhlet extraction method for about six hours. The solvent was evaporated, and the extracted fat residue was dried to constant weight. The fat content was expressed as a percentage of the original sample weight.

Formula: Crude Fat (%) = $((W_2 - W_1) / W_s) \times 100$

Keys:

W_1 = Weight of empty extraction flask (g)

W_2 = Weight of flask + extracted fat (g)

W_s = Weight of sample used (g)

Crude Fiber Determination

The defatted sample was digested sequentially with dilute acid and dilute alkali to remove soluble materials. The residue was filtered, dried, weighed, and then incinerated at 525 °C. The loss in weight after ignition represented the crude fiber content ([AOAC, 2005](#)).

Formula: Crude Fiber (%) = $(W_2 - W_3) / W_1 \times 100$

Keys:

W_1 = Weight of sample before digestion (g)

W_2 = Weight of dried residue after digestion (g)

W_3 = Weight of residue after ashing (g)

Carbohydrate Content Determination

The carbohydrate content was determined by subtracting the sum of the percentages of moisture, ash, crude protein, crude fat, and crude fiber from 100.

Formula: Carbohydrate (%) = 100 - (Moisture + Ash + Protein + Fat + Fiber)

Micronutrient Analysis

Sample digestion

1g of sample was weighed into 50mls beaker, 2.5ml of hydrochloric acid and 7.5mls of nitric acid aqua regia solution (1:3) was added. The beaker containing the mixture was boiled at temperature range of 100-170OC until precipitate was observed. The precipitate was removed and few drops of water was added. The resulting solution were mixed and filtered, the filtrate was measured and made up to 50mls and then analyzed. Microwave Plasma Atomic Emission Spectrophotometer was used for the mineral analysis.

Vitamins

Vitamin A (Retinol) was extracted with cold ethanol and hexane and quantified spectrophotometrically at 325nm using a standard retinol calibration curve. Vitamin B6 (Pyridoxine), B9 (Folate) and B12 (Cobalamin) were extracted by acid hydrolysis followed by enzymatic digestion and analyzed using high-performance liquid chromatography (HPLC) equipped with UV detector. Concentrations were determined against appropriate calibration standard. Vitamin C (Ascorbic acid) was determined by titration with 2,6-dichlorophenolindophenol (DCPIP) dye and expressed as mg/100g of sample

Extraction of Modulating Effect of Blend Components on Sexual Functions

To complement the experimental analysis, the modulatory effects of some of the blend components on sexual functions were extracted from published peer-reviewed articles. Data were extracted, synthesized, and summarized in tabular form (Table 3) to further provide scientific support the nutritional relevance of the blend on sexual functions.

Statistical Analysis

Data results obtained from proximate, mineral, and vitamin analysis were analyzed using GraphPad Prism version 8.0 (GraphPad Software, USA). Results were expressed as mean \pm SD. Differences between mean values were assessed using one-way analysis of variance (ANOVA) with statistical significance set at $p \leq 0.05$.

Results and Discussion

Table 1: Proximate Composition of the Aphrodisiac Blend

Parameters	Percentage Composition	Standard Deviation
Moisture	1.97	0.21 ^a

Crude Protein	3.33	0.61 ^a
Fat	9.67	1.30 ^c
Ash	1.93	1.12 ^a
Carbohydrate	76.20	1.90 ^d
Fibre	7.17	1.10 ^b

Data are expressed as mean \pm SD. Groups bearing different superscript are statistically significantly different.

Table 2: Elemental Concentration in mg/kg Dry Weight of the Aphrodisiac Blend

Elements	Concentrations (mg/g)	Standard Deviation
Mg	74.08	1.60 ^c
Se	1.38	0.05 ^a
Cu	0.57	0.01 ^a
Zn	0.72	0.02 ^a
Mn	20.12	0.30 ^b

Data are expressed as mean \pm SD. Groups bearing different superscript are statistically significantly different

Table 3: Vitamin Concentration of the Aphrodisiac Blend

Vitamins	Concentrations
Vit A (μ g/100g)	85.30 \pm 6.23
Vit B ₆ (μ g/100g)	15.54 \pm 0.40
Vit B ₉ (μ g/100g)	16.17 \pm 0.84
Vit B ₁₂ (μ g/100g)	18.56 \pm 0.17
Vit C (mg/100g)	130.40 \pm 0.88

Data are expressed as mean \pm SD.

Table 3: Modulating Effect of Aphrodisiac Blend Components on Sexual Functions

Ingredient and Bioactives	Hormonal	Gene Expression	References
Ginger (<i>Zingiber officinale</i>): Gingerols Shogaols 6-Gingerol Zingerone	<ul style="list-style-type: none"> • Increase Luteinizing hormone (LH) secretion • stimulates Leydig cells for testosterone production • Increase serum testosterone levels • Increase testicular cholesterol (steroid precursor) • Increase Nitric Oxide (NO), enhances cGMP signalling and penile smooth muscle relaxation 	<ul style="list-style-type: none"> • Increase <i>St4R</i> (Steroidogenic Acute Regulatory protein): cholesterol transport for steroid synthesis • Increase level <i>P450scc</i>: catalyses first step in testosterone biosynthesis • Increase <i>17β-HSD</i>: converts androstanedione to testosterone • Stimulate Increase in <i>SOD, CAT, GPx</i> antioxidant enzymes in testes 	Mohammadi et al., 2019 ; Kamtchouing et al., 2002 ; Alida Nihayah et al., 2025
Tiger Nut (<i>Cyperus esculentus</i>): Quercetin Vitamin C Vitamin E Zinc Arginine	<ul style="list-style-type: none"> • Stimulate increase in serum testosterone • increase Follicle-stimulating hormone and Leutinising Hormone secretion • Increase Nitric oxide production from arginine and subsequent improved penile blood flow 	<ul style="list-style-type: none"> • Antioxidants protect steroidogenic enzyme genes from oxidative damage • Zinc acts as cofactor for transcription factors regulating androgen receptor expression 	Al Essawe and Almashhadani, 2010 ; El-Taweel et al., 2015
Date (<i>Phoenix dactylifera</i>): Flavonoids Carotenoids Steroidal-compounds Triterpenes	<ul style="list-style-type: none"> • Increase testosterone levels • Increase LH secretion • Increase spermatogenesis rate via gonadotropin modulation • Phytoestrogens modulate oestrogen receptor activity 	<ul style="list-style-type: none"> • Flavonoids upregulate antioxidant and anti-apoptotic genes in testes • Steroidal compounds may activate <i>StAR</i> and <i>3β-HSD</i> for androgen synthesis • Polyphenols protect against oxidative sperm DNA damage 	Al Za'abi et al., 2022 ; Bahmanpour et al., 2006 ; El-Kashlan et al., 2015

Keys: cGMP: Cyclic Guanosin Monophosphate, *17β-HSD*: *17β-Hydroxysteroid Dehydrogenase*, *P450scc*: *Cytochrome P450 side-chain cleavage enzyme*, *SOD*: *Superoxide Dismutase*, *CAT*: *Catalase*, *GPx*: *Glutathione Peroxidase*, *3β-HSD*: *3β-Hydroxysteroid Dehydrogenase*, *StAR*: *Steroidogenic Acute Regulatory protein*

Table 1 presents the proximate composition data for the blend, its low moisture content ($1.97 \pm 0.21\%$) reflects a characteristic of a typical powdered beverage, translating to high shelf life

and decreased microbial contamination can compromise the safety of the food. Additionally, high moisture content has been associated with reduced shelf life and [stability \(Akande and Okunola, 2011\)](#). The elevated carbohydrate fraction of the blend ($76.20\pm1.90\%$) provides readily available energy for cellular metabolism, which may also support energy-demanding physiological processes like erectile function. This support similar carbohydrate surge by [\(Odesanmi, 2012\)](#) with 40.84% carbohydrate. The crude protein constitutes 3.33% of the blend and could serve as source of amino acids, such as arginine which is closely associated with the enhancement of activities in many aphrodisiacs by increasing nitric oxide production and subsequent improved penile blood flow [\(Sumalatha et al., 2010\)](#). The bit high fiber constituent of the blend suggests its potential in prevention and management of weight, diabetes and diverticulosis [\(Borges et al., 2008\)](#). Also function as prebiotic, thereby promoting gut microflora and enhance textural quality of the blend [\(Singla and Chakkavarthi, 2017; Yilmaz-Akyuz et al., 2019\)](#). The ash percentage is a reflection of good rheological properties and the nutritional quality in terms of mineral composition [\(Schuck et al. 2012\)](#). The high fat composition was predicted as a result of high tiger nut percentage composition of the blend formulate (50 %), Tiger nut is naturally rich in fat (25.50%) [\(Belewu and Abodunrin, 2006\)](#). Therefore, the blend fat percentage of (9.67 ± 1.30) supports this claim.

The blend contained high level of magnesium (74.08 ± 1.60 mg/g), a mineral vital for bioenergetics, muscle tone, and vascular function. This high amount may support erectile function by facilitating smooth muscle relaxation through nitric oxide (NO) pathways. Similar associations have been reported by [\(Veronese et al., 2019\)](#), who linked magnesium intake with improved testosterone levels and sexual performance in men. Manganese, also present at appreciable level (20.12 ± 0.30 mg/g), is involved in steroid hormone synthesis and testicular function. Research by [\(Gupta et al., 2017\)](#) indicated that manganese supplementation enhanced libido and spermatogenesis in animal models, which supports the potential role of this blend in reproductive enhancement. Other trace elements such as selenium, zinc, and copper, though present at lower concentrations (1.38 ± 0.05 , 0.72 ± 0.02 and 0.57 ± 0.01 mg/g) respectively, are nonetheless critical. Selenium protects spermatozoa from oxidative damage and improves motility, as stated by [\(Agarwal et al., 2014\)](#), who highlighted its role in male fertility. Zinc play a vital role in testosterone biosynthesis and sperm quality, and inadequate intake has been linked with reduced sexual performance [\(Fallah et al., 2018\)](#). Copper, though in trace amounts, participates in antioxidant enzyme systems such as superoxide dismutase, contributing indirectly to reproductive health by reducing oxidative stress (Table 2).

Table 3 reveals the vitamin concentration of the blend. Vitamins plays a crucial synergistic role in modulating sexual functions through improved reproductive hormone regulation, enhanced neurotransmitter balance, vascular support, and antioxidative defence. In this study, Vitamin A was in relatively high amounts (85.30 ± 6.23 μ g/100 g). This finding is consistent with its known role in spermatogenesis and steroid hormone regulation. Vitamin A and its derivatives, such as retinoic acid, regulate the expression of genes involved in testicular function and sperm maturation. Sufficient Vitamin A is essential for spermatogenesis and has been correlated with improved sperm motility and sexual behaviour in experimental studies [\(Sharma et al., 2019\)](#). In comparison with the 72.6 μ g/100g reported by [\(Abulude et al., 2021\)](#) in an herbal reproductive tonic, the present blend yielded higher concentrations, suggesting enhanced potential for modulating reproductive physiology. The B-complex vitamins identified in the blend also contribute significantly to sexual health. Vitamin B₆ (15.54 μ g/100 g) functions as a cofactor in the biosynthesis of neurotransmitters such as serotonin, dopamine, and gamma-aminobutyric acid (GABA), which play critical roles in sexual functions. Vitamin B₉ (16.17 μ g/100 g) and Vitamin B₁₂ (18.56 μ g/100 g) are essential in homocysteine metabolism and methylation reactions. Elevated homocysteine has been linked with endothelial dysfunction and impaired penile vasodilation [\(Yao et al., 2020\)](#). Thus, adequate levels of folate (B₉) and cobalamin (B₁₂) in the present blend may contribute to improved erectile function via endothelial protection and nitric oxide bioavailability. A similar relationship was reported [\(Selhub and Miller, 2017\)](#), who demonstrated that folate and Vitamin B₁₂ supplementation improved endothelial responsiveness in men with erectile dysfunction, highlighting the potential synergistic role of these vitamins in maintaining vascular health and sexual function. The blend exhibited a notably high Vitamin C content (130.40 mg/100 g). this antioxidant vitamin is known to counteract

oxidative stress, a major factor in impaired sperm quality and erectile disorders. Its physiological role includes safeguarding sperm DNA, maintaining nitric oxide bioactivity, and supporting testosterone production ([Abulude et al., 2021](#)). The concentration in the present study is higher than values reported by ([Adewumi et al., 2018](#)) in an herbal fertility enhancer (92.3 mg/100 g), suggesting that the blend under investigation may provide stronger antioxidative support to counteract free radical-mediated impairments of sexual function (Table 3).

Despite these promising implications, several limitations must be acknowledged. First, the study was limited to compositional analysis and did not include *in vivo* or clinical assessments of sexual function outcomes. While the nutritional and bioactive profiles strongly suggest potential aphrodisiac effects, direct physiological or behavioral evidence is required to substantiate these claims. Second, bioavailability and metabolic interactions of the identified nutrients were not assessed. Nutrient content alone does not necessarily translate into biological efficacy, as absorption and utilization can be influenced by food matrix interactions and individual metabolic variability. Third, the study did not evaluate sensory acceptability or consumer perception, which are critical factors for the successful adoption of functional food products.

Future research should therefore focus on validating the functional effects of the blend through controlled animal studies and human clinical trials, with particular emphasis on erectile function, libido, hormonal profiles, and sperm parameters. Assessing nutrient bioavailability and antioxidant activity *in vivo* would also strengthen the mechanistic understanding of the blend's aphrodisiac potential. Additionally, optimization of formulation ratios could further enhance functional efficacy while improving sensory qualities such as taste, aroma, and mouthfeel. Incorporating consumer acceptability studies and shelf-life assessments under real storage conditions would facilitate translation from laboratory formulation to market-ready functional beverage products.

Conclusion

This research work has provided comprehensive insight into the nutritional composition of the blend which may explain the basis for its aphrodisiac and general sexual health usage. The result indicate that the blend possesses the capacity to improve micronutrient status, modulate vascular, hormonal, and anti-oxidant pathways, suggesting its potentiality to translate into superior efficacy in supporting sexual health.

Acknowledgement

Authors duly acknowledge the support of the Laboratory of the Department of Chemistry, Ahmadu Bello University, Zaria. Also, the department of Biochemistry, Kaduna Polytechnic, Kaduna, for providing the necessary facilities and technical assistance that made this research possible.

Authors Contribution

Muhammed M, conceived and designed the study. Anjorin A, collected the research materials. Muhammed M, Ibrahim A,U carried out the laboratory experiments and data collection. Daramola D,F, performed the data analysis and interpretation. Muhammed M, drafted and coordinated its revision. All authors reviewed, the final version of the manuscript before submission.

Reference

Abulude, F.O., Adebayo, A.O., & Ajayi, O.O. (2021). Nutritional and phytochemical composition of selected herbal reproductive tonics. *Journal of Ethnopharmacology*, 273, 113979.

Adejuyitan, J. A. (2011). Tiger nut processing: Its food uses and health benefits. *American Journal of Food Technology*, 6(3), 197–201.

Adewumi, A. A., Oboh, G., & Ademiluyi, A. O. (2018). Phytochemical composition and fertility-enhancing properties of selected medicinal plants. *Journal of Complementary and Integrative Medicine*, 15(4), 1–9.

Agarwal, A., Majzoub, A., Esteves, S. C., Ko, E., Ramasamy, R., & Zini, A. (2014). Oxidative stress and its implications in male infertility. *Reproductive Biology and Endocrinology*, 12(1), 87. DOI: <https://doi.org/10.1186/1477-7827-12-87>

Akande, E.A., and Okunola, D.D. (2011). Production and quality evaluation of wild pepper (*Erythrococca anomala*) flavoured chocolate drinks. *J. Agric. Sc. and Tech.* A1, 672-677

Al Essawe, A. A., & Almashhadani, H. A. (2010). Effect of *Cyperus esculentus* tubers on reproductive hormones in male rats. *Journal of Animal and Veterinary Advances*, 9(1), 83–86.

Al Za'abi, M., Al Mahroqi, H., & Al Riyami, H. (2022). Date pit powder supplementation increases testosterone in male mice. *BMC Complementary Medicine and Therapies*, 22, 317. DOI: <https://doi.org/10.1186/s12906-022-03761-9>

Alida Nihayah, N., Kusuma, W., & Rahmi, I. (2025). Effect of red ginger (*Zingiber officinale*) infusion on LH and testosterone levels in male rats. *Sains Medika: Jurnal Kedokteran dan Kesehatan*, 16(1), 45–53.

AOAC Internatioal. Official methods for analysis of AOAC International. AOAC International.2005; (18th edition).

Ariyo, O., Adetutu, O., and Keshinro, O. (2021). Nutritional composition, microbial load and consumer acceptability of tiger nut (*cyperus esculentus*), date (*phoenix dactylifera l.*) And ginger (*zingiber officinale roscoe*) blended beverage. *Journal of Tropical Agriculture, Food, Environment and Extension*. Volume 20 Number 1 (January 2021) pp. 72 - 79

Bahmanpour, S., Talaei, T., Vojdani, Z., Panjehshahin, M. R., Poostpasand, A., Zareei, S., & Ghaeminia, M. (2006). Effect of *Phoenix dactylifera* pollen on sperm parameters and reproductive system of adult male rats. *Iranian Journal of Medical Sciences*, 31(4), 208–212.

Banhani, S. A. (2018). Ginger and testosterone: A systematic review of clinical and experimental evidence. *Biomolecules*, 8(4), 119.

Belewu, M.A., and Abodunrin, O.A. (2006). Preparation of Kunnu from unexploited rich food source: Tiger nut (*Cyperus esculentus*). *World J. Dairy Food Sci.* 1, 19-21

Borges O, Gonçalves B, Sgeoeiro L, Correia P, and Silva A. (2008). Nutritional quality of chestnut cultivars from Portugal. *Food Chem.* 106, 976-984

Corbo, M.R., Bevilacqua, A., Petruzzi, L., Casanova, F.P. and Sinigaglia, M. (2014). Functional beverages: the emerging side of functional foods. *Compr. Rev. Food Sci. Food Saf.*, 13, 1192-1206

Ekeanyanwu, R.C. and Ononogbu, C.I. (2010). Nutritive value of Nigerian tiger nut (*Cyperus esculentus* L.) *Agric. J.*, 5 (5), 297-300

El-Hadrami, A., & Al-Khayri, J. M. (2012). Socioeconomic and traditional importance of date palm. *Emirates Journal of Food and Agriculture*, 24(5), 371–385.

El-Kashlan, A. M., El-Naggar, M. M., & Abdel-Rahman, R. F. (2015). Phytochemical profile and therapeutic potential of *Phoenix dactylifera* in male infertility. *Journal of HerbMed Pharmacology*, 4(2), 75–83.

El-Tawee, F.M., El-Sheikh, M.M., & Mahmoud, A. (2015). Effect of tiger nut (*Cyperus esculentus*) on male fertility and reproductive hormones. *Asian Journal of Andrology*, 17(1), 47–53.

Fallah, A., Mohammad-Hasani, A., & Colagar, A. H. (2018). Zinc is an essential element for male fertility: a review of Zn roles in men's health, germination, sperm quality, and fertilization. *Journal of Reproduction & Infertility*, 19(2), 69–81.

Gupta, R. S., Kachhawa, J. B. S., & Chaudhary, R. (2017). Influence of manganese on reproductive performance in rats. *Journal of Trace Elements in Medicine and Biology*, 43, 76–82. DOI: <https://doi.org/10.1016/j.jtemb.2016.12.004>

Kamtchouing, P., Fandio, G. Y., Dimo, T., & Jatsa, H. B. (2002). Evaluation of androgenic activity of *Zingiber officinale* extracts in male rats. *Asian Journal of Andrology*, 4(4), 299–301.

Masoudi, M., Maasoumi, R. and Bragazzi, N. L. (2022). Effects of the COVID-19 pandemic on sexual functioning and activity: a systematic review and meta-analysis. *BMC Public Health*. 22: 189. DOI: <https://doi.org/10.1186/s12889-022-12609-5>

Mohammadi, M., Jahanbakhsh, Z., & Shokrzadeh, M. (2019). Protective effect of ginger extract against ethanol-induced reproductive toxicity in male rats. *Brazilian Archives of Biology and Technology*, 62, e19180619. DOI: <https://doi.org/10.1590/1678-4324-2019180619>

Odesanmi, O.S. (2012). Nutritional prospect of an aphrodisiac *Microdermis keayana*. *Journal of Medical Plants Research*, 6(7), 1187-1190

Okigbo, R.N., Eme, U.E., Ogbogu, S. (2008). Biodiversity and conservation of medicinal and aromatic plants in Africa. *Biotechnol. Mol. Biol. Rev.*, 3(6): 127-134

Omolola, S.O. Sikiru, A.O., Akinkunmi, A.O., Ewenodere, B., Ridwan, A.L. (2012). Nutritional prospect of an aphrodisiac *Microdermis keayana*. *Journal of Medicinal Plants Research*. Vol. 6(7), pp. 1187-1190, 23. DOI: [10.5897/JMPR11.919](https://doi.org/10.5897/JMPR11.919)

Schuck, P., Dolivet, A., and Jeantet, R. (2012). Analytical methods for food and dairy powders. West Sussex: Wiley. p. 153

Selhub, J., & Miller, J. W. (2017). The pathophysiology of homocysteine and relevant clinical consequences. *Annual Review of Nutrition*, 37, 211–239. DOI: <https://doi.org/10.1146/annurev-nutr-071816-064955>

Sharma, R., Biedenharn, K. R., Fedor, J. M., & Agarwal, A. (2019). Lifestyle factors and reproductive health: taking control of your fertility. *Reproductive Biology and Endocrinology*, 11(1), 66.

Singla, V., and Chakkaravarthi, S. (2017). Applications of prebiotics in food industry: A review. *Food Sci. Technol. Int.* 23 (8), 649-667

Strong, T.D., Gebska, M.A., Champion, H.C., Burnett, A.L., Bivalacqua, T.J. (2008). Stem and endothelial progenitor cells in erection biology. *Int J Impot Res.* 20:243-54.

Sumalatha, K., Saravana, K.A., Mohama, L.S (2010). Review of natural Aphrodisiac potential to treat sexual dysfunction. *Int. J. Pharm. Ther.* 1: 10-18.

Veronese, N., Watutantrige-Fernando, S., Luchini, C., Solmi, M., Sartore, G., Sergi, G., ... & Manzato, E. (2019). Effect of magnesium supplementation on testosterone levels: a systematic review and meta-analysis. *Biological Trace Element Research*, 190(2), 446-455. DOI: <https://doi.org/10.1007/s12011-018-1544-0>

Yao, J. K., Leonard, S., & Reddy, R. (2020). Folate and homocysteine in male sexual health: vascular implications and therapeutic prospects. *Frontiers in Pharmacology*, 11, 1058. DOI: <https://doi.org/10.3389/fphar.2020.01058>

Yilmaz-Akyuz, E., Ustun-Aytekin, O., Bayram, B. and Tutar, Y. (2019). Nutrients, bioactive compounds, and health benefits of functional and medicinal beverages. In: *Nutrients in Beverages* (pp. 175-235) Academic Press